Correlation network analysis for data integration and biomarker selection.

نویسندگان

  • Aram Adourian
  • Ezra Jennings
  • Raji Balasubramanian
  • Wade M Hines
  • Doris Damian
  • Thomas N Plasterer
  • Clary B Clish
  • Paul Stroobant
  • Robert McBurney
  • Elwin R Verheij
  • Ivana Bobeldijk
  • Jan van der Greef
  • Johan Lindberg
  • Kerstin Kenne
  • Ulf Andersson
  • Heike Hellmold
  • Kerstin Nilsson
  • Hugh Salter
  • Ina Schuppe-Koistinen
چکیده

High-throughput biomolecular profiling techniques such as transcriptomics, proteomics and metabolomics are increasingly being used in in vivo studies to recognize and characterize effects of xenobiotics on organs and systems. Of particular interest are biomarkers of treatment-related effects which are detectable in easily accessible biological fluids such as blood. A fundamental challenge in such biomarker studies is selecting among the plethora of biomolecular changes induced by a compound and revealed by molecular profiling, to identify biomarkers which are exclusively or predominantly due to specific processes. In this work we present a cross-compartment correlation network approach, involving no a priori supervision or design, to integrate proteomic, metabolomic and transcriptomic data for selecting circulating biomarkers. The case study we present is the identification of biomarkers of drug-induced hepatic toxicity effects in a rodent model. Biomolecular profiling of both blood plasma and liver tissue from Wistar Hannover rats administered a toxic compound yielded many hundreds of statistically significant molecular changes. We exploited drug-induced correlations between blood plasma analytes and liver tissue molecules across study animals in order to nominate selected plasma molecules as biomarkers of drug-induced hepatic alterations of lipid metabolism and urea cycle processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of miR-24 and miR-137 as novel candidate multiple sclerosis miRNA biomarkers using multi-staged data analysis protocol

Many studies have investigated misregulation of miRNAs relevant to multiple sclerosis (MS) pathogenesis. Abnormal miRNAs can be used both as candidate biomarker for MS diagnosis and understanding the disease miRNA-mRNA regulatory network. In this comprehensive study, misregulated miRNAs related to MS were collected from existing literature, databases and via in silico prediction. A multi-staged...

متن کامل

Statistical analysis of big data on pharmacogenomics.

This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes...

متن کامل

Sustainable Supplier Selection: A New Integrated Approach of Fuzzy Interpretive Structural Modeling and Dynamic Network Data Envelopment Analysis

Data envelopment analysis (DEA), as a well-established nonparametric method, is used to meet efficiency evaluation purposes in many businesses, organizations, and decision units. This paper aims to present a novel integrated approach to fuzzy interpretive structural modeling (FISM) and dynamic network data envelopment analysis (DNDEA) for the selection and ranking of sustainable suppliers. Firs...

متن کامل

BeeID: intrusion detection in AODV-based MANETs using artificial Bee colony and negative selection algorithms

Mobile ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes constructed dynamically without the use of any fixed network infrastructure. Due to inherent characteristics of these networks, malicious nodes can easily disrupt the routing process. A traditional approach to detect such malicious network activities is to build a profile of the normal network traffic, and then iden...

متن کامل

Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers

MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical im...

متن کامل

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular bioSystems

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2008